

Metastatic Breast Cancer: Will it Ever Be Curable? What Will it Take To Get There?

Angie DeMichele, MD, MSCE Jill & Alan Miller Endowed Chair in Breast Cancer Excellence Co-Leader, Breast Cancer Program, Abramson Cancer Center Professor of Medicine and Epidemiology University of Pennsylvania

Disclosures

- Research funding: Pfizer, Novartis, Genentech, Calithera
- Scientific Consulting: Context Therapeutics

Many of the slides I'll be showing today are Dr. Lisa Carey's.

So she is here in spirit...

• What is metastatic breast cancer?

New insights into metastatic biology

- Tumor genomic testing to target metastatic breast cancer biology
- How do we apply this to treatment?

 New therapeutic strategies that are getting us closer to cure

- CDK 4/6 inhibitors for hormone-receptor positive cancer
- Targeting Her2 with multiple approaches
- Immunotherapy for triple negative disease and beyond

What is "Metastatic Breast Cancer"?

Malignant growth or tumor resulting from the division of abnormal cells ****** the breast **from**

Breast Cancer Metastasis Model

It is Breast Cancer If It...

Arose from cells that comprise the breast Can divide and grow without normal control Is able to invade other tissues

It is Breast Cancer If It...

It does not matter if the tumor is in the breast, lung, or liver. If the cells came from the breast, it is breast cancer.

Breast cancer in any other site besides breast and local lymph nodes is metastatic.

invasive breast cancer

uct

Goals: From Early to Metastatic

Secondary Prevention of Metastatic Disease

Metastatic (Stage IV, spread to other organs) Incurable Goals of care: control cancer, quality of life Maximizing control and longevity Maximizing quality of life

Someday...cure?

Understanding Metastatic Biology

Who Is Scarier?

Bono: International humanitarian

Bernie Madoff: "Estate planner"

Just like people, cancer's looks can be deceiving... We cannot easily identify the "bad" ones

How Do We Better Understand Metastatic Breast Cancer?

Better treatments = understanding tumor genes?

A mutation is a harmful spelling change in the DNA language

DNA sequence ...G G T C A T T G C C..

the cu

Two Kinds of Genetic Abnormalities in the Cancer

Inherited. Another thing you can blame on your mother or father. 5-10% of breast cancers are inherited.

"Somatic" errors (only in the cancer, rest of cells normal). All cancers have these.

Genes Become RNA, Which Becomes Protein

Genetic Errors = Mutation

Can cause cell to:

Make too much protein (e.g. "HER2-positive" disease)

Not make an important protein (e.g. BRCA1)

Cancer Cell Aberrations Run the Gamut from Gene to Protein

the cure is with in

Rosenthal N. NEJM 1994

Collaborative, Integrative Science to the Rescue

"Omics"

Neologism referring to the study of a biologic process using a collective approach

...

Best studied so far

🐺 Penn Medicine

ABRAMSON CANCER CENTE

Breakthrough Technology

Chuck

NAME	BC/FUMI0	BC/FUMI4	BC/FUMI4	BC601B-A	3C601A-B	BC/FUMI1	BC/FUMI2	BC/FUMI2	BC/FUMI1	BC/FUMI1	BC102B-B	BC/FUMI2	BC/FUMI3	BC/FUMI3	BC/FUMI1	3C/FUMI1
adipose differentiation-related prote	0.242	1.21	-0.253	-0.841	-0.423	-0.363	-0.852	-1.383		-2.642	0.501	-0.25	-0.605	-0.636	0.229	-0.626
plasminogen activator, urokinase re	0.908	0.485	-0.397	-0.767	-0.886	-0.251	-0.683	0.057	-0.317	-1.2	0.125		-0.536	-0.248		-0.365
plasminogen activator, urokinase re	0.4635	0.3545	-0.8975	-1.23	-0.8335	0.0175	-1.002	0.1555	-0.4325	-1.008	-0.1785		-0.7445	-0.1485	0.0555	0.2055
coronin, actin binding protein, 1C	0.551	0.151	-0.422	0.007	-0.638	0.087		-0.689	-0.91	-0.853	0.052	-0.492	-0.201	-0.152	-0.368	-0.741
**coatomer protein complex, subun	-1.061	-0.8655	-0.1235	-0.9895	0.3815	-0.4955	-0.2775	-0.1465	-1.109	-0.8635	0.2615	-0.0905	-0.3225	-0.6035	0.0195	-0.9345
coactosin-like protein R78490	-0.8835	-0.4545	0.2375	-1.177	0.2155	-0.2975	-0.9385	-0.2815	-1.494	-0.5985	0.4095	-0.3465	0.2185	-0.1345	-0.2895	-0.5525
folylpolyglutamate synthase R44864	0.686	1.583	1.313	0.048	-0.272	-0.143	-0.394	0.423	-0.445	-0.854	0.322	-0.03	-0.412	0.214	-1.098	-0.175
lysozyme (renal amyloidosis) N639	-0.18	1.155	1.575	-1.635	0.355	0.295	-0.805	0.135	-2.145	-0.955	0.575	0.735	-0.435	-0.855	-0.8	-1.705
chemokine (C-C motif) receptor 1	AA036881	0.524	1.233	-1.459	-0.095	-0.122	-0.196	0.101		-0.942	-0.2	-0.133	-0.549	-0.763		-0.059
interferon, gamma-inducible proteir	-0.181	-0.062	0.37	0.064	0.418	-0.33	-0.098	-0.289	-1.042	-0.332	0.907	1.056	-0.8	-0.193	-0.789	-1.25
cystatin B (stefin B) H22919	-0.188	-0.489	-0.603	0.074	-0.212	-0.295	-0.54	-0.535	-0.453	-0.479	-0.021	0.291	-0.651	-0.536	-0.401	-0.511
cathepsin S AA236164	-0.791		0.334	-0.316	0.723	-0.46	0.39	-0.452		-0.413		1.063	-0.849	-1.088	-0.94	-1.291
small inducible cytokine A2 (monoc	0.2665	0.2955	0.5315	-0.1285	0.4255	-1.099	-0.7265	-0.6035	-1.052	-1.438	0.1355	0.0365	-0.4335	0.0875	-1.218	-0.7785
natural killer cell transcript 4 AA458	0.483	0.348	0.575	-0.685	0.971	-0.335	-0.222	-0.116	-1.644	-0.66	-0.322	0.885	-0.08	-0.02	-0.441	-0.51
superoxide dismutase 2, mitochono	0.431	0.301	-0.836	0.519		-0.492	-0.834	-0.86		0.781	0.005	-1.163	-1.283	-0.969		-0.586
superoxide dismutase 2, mitochono	Irial AA487	0.3185	-0.6835	0.4865	0.6925	-0.7895	-0.6005	-0.5815	0.4995	0.0165	0.3755	-0.1225	-1.129	-1.137		-0.6935
transforming growth factor, beta-inc	0.0235	0.6525	-0.3785	-0.5505	-0.3675	-0.4755	-0.1105	0.3435	0.0785	-0.4735	0.7925	1.532	-0.3355	-0.0885	0.2495	-0.1985
glycine dehydrogenase (decarboxy	-1.122	-1.412	-1.275	-1.764	-0.611	1.259	-1.25	-0.76	-2.159	-1.72	-1.017	-0.972	-0.715	-0.543	-0.658	-0.818
syndecan 2 (heparan sulfate protect	-1.828	-1.7	-1.409	-1.964	-0.975	1.516	-1.24	-1.75	-2.219	-2.477	-1.08	0.29	-1.641	-2.045	-0.315	-1.356
giutatnione S-transferase pi R3364	-1.726	-1.892	-1.568	0.771	1 400	1.528	-1.346	-2.157	-3.114	-3.146	-0.943	0.236	-1.349	-1.674	-0.416	-1.557
cinunase o-like 2 AA668821	0.404	1 0 1 1	0.407	-0771	-1436	-1454	-0.813	-15/8	0.392	-0.167	0	-0.469	0.129	-0.566	0.242	-0.489
rac homolog gono family member	0.464	-1.314	-0.187		ا مد م		- I f -				825	0.167	-0.441	-0.928	0.316	-1.188
ras homolog gone family, member	-1.362	-0.471	-0.421	- 11	nan	K CC	od to	or co	mn	uters	5 <u>713</u> 490	-0.167	0.09	0.912	0.249	-0.393
** zipo fingor DUUC domoin contoi	-1.311 pipg E A 4 4	-0.763	-0.61	* *		. 37			····P		480	-0.778	-0.579	0.612	0.348	-0.222
korotin E (opidormolycic bulless sin	0 200	-0.965	-0.571		0.402	0 127	0.274	0 779	1 500	1 797	926	-1.103	-0.462	-0.063	0.628	0.347
keratin 5 (epidermolysis bullosa sin	-0.309	-0.485	-0.748	-0.909	-0.403	-0.127	-0.371	-0.778	- 1.596	-1.767	-0.782	-1 119	-0.559	-0.004	1 962	-0.068
keratin 17 AA026100	ipiez, Dowi	-0.593	-2.421	0.301	-0.45	-0.38	-0.131	-0.754		-2 708	-0.641	-0.148	-0.389	-1.423	2 264	1 758
tripartite motif-containing 29 AA055	-0.523	-0.333	-2.234	-0.726	-0.155	-0.401	-1.102	-0.754	-1 591	-1 789	-1.076	-0.140	-0.201	-1.051	2.204	-0.24
pleiomorphic adenoma gene-like 1	AA463204	-0.7035	-0 5595	-0.7765	-0.2835	-0.401	-0 1885	-1.0	-1.466	-2.035	-0 1475	-0.7075	-0.4025	-1.054	0.3535	-0.5835
secreted frizzled-related protein 1 /	A002080	-1 951	-2 022	-1 982	0.069	-0 117	-1 543	-2 996		-2.657	-0.275	-1 187	-0.262	-0.688	3 135	0.295
Homo sapiens cDNA EL 111796 fis	clone HEN	-1 425	LIGEL	-0.74	-0 798	0.243	-0.225	-0.061		-0.957	-0.001		-0.491	-0.28	0.595	-0.721
ESTs AA074677		-0.411	-0.412	-0.879	-0.78	-0.401	-0.135	-0.508		-2.237	0.077		-0.72	-1.057	0.000	-1.301
pellino homolog 1 (Drosophila) W8	-0.3805	-1.159	-0.6945	-0.3935	-0.1785	-0.3665	-0.3835	-0.2825	0.1245	0.3185	0.2735	-1.329	-0.9455	-1.313		-0.4235
matrix metalloproteinase 7 (matrilys	-0.887			-2.32	0.16	-1.65		-1.54	0	-1.065	1.453		-1.55	-2.859		-0.04
moesin R22977	0.452	-0.759	-0.433	-0.691	0.148	-0.538	-0.28	-0.478	-0.477	0.019	0.062		-0.001	0.259	-0.24	-0.314
prion protein (p27-30) (Creutzfeld-	-0.8095	-1.302	-0.5695	-1.843	-0.8355	-0.3325	-0.7305	0.2015	-0.3825	-0.2335	-0.4605	-1.181	-0.6875	-0.3315	0.2825	-0.0605
chitinase 3-like 1 (cartilage glycopr	otein-39) A	1.474	1.071	0.678	0.987	-1.357		-2.185		-1.619	3.517	-0.465	-1.549	-1.699		-1.262
annexin A8 AA235002		-0.55		-0.832	0.209	0	-0.576	-0.199		-1.046	-0.454	-0.221	0.134	-0.015	0.619	0.519
hypothetical protein FLJ20481 N32	-0.078	-0.939	-1.002	0.058	-0.058	-0.158	-1.65	-0.794		-1.612	0.17	1.318	0.404	-0.312		-0.039
ADP-ribosylation factor-like 7 N353	-0.9415	-0.0585	-0.3685	-0.9365	-0.2155	0.0715	-0.2825	-0.5505		-1.107	-0.5855	0.2285	-0.2475	0.1635		-0.1405
cystatin A (stefin A) W72207		-0.532	-0.941	0.909	1.783	0.164	-0.106	-0.577		-1.496	0.588	3.351	-0.73			-0.855
inhibitor of DNA binding 3, dominar	-0.46	-0.587	-0.421	-0.358	0.326		0.638		-0.642		-0.224	-0.143	-0.445	-0.58	0.377	
complement component 1, r subco	0.116		0.475	-1.506	0.089	-0.624	0.876	-1.115		-1.773	-0.505	-0.276	-0.204	-1.308	0.584	-0.431
nicotinamide N-methyltransferase 1	0.675	-0.083	0.035	-0.244	0.053	-0.021	-0.365	-1.174	-1.235	-1.789	-0.688	0.972	-0.261	-0.532	0.606	0
myosin IE AA029956	-0.6075		-0.5465	-0.8195	-0.3755	-0.3535	-0.5545	-0.6505		-1.089	0.0005	-0.0205	0.1535	-0.1775		-0.0005
major histocompatibility complex, c	-0.494	-0.582	-1.091	-0.32	0.305	-0.098	-0.085	0.262	-1.668	-1.457	-0.039	-0.362	-0.218	-0.838	-0.197	-0.537
fatty acid binding protein 7, brain V	V72051		-1.595	-2.086	-1.717	-0.387	-2.433	-0.184			-1.441		-0.603	0.446		0.728
kynureninase (L-kynurenine hydrol	lase) H8747	-0.342	-0.591	1.233	0.358	-0.954	-1.687	-1.194	-1.515	-2.291	-0.198	0.075	-0.657	-1.675	-0.58	-1.138
cytochrome P450, subfamily I (dio	1.065	-0.579	0	-0.767	0.392	-0.386	-0.479	-0.752	-0.401	-0.549	0.165	0.11	-0.605	-0.779	0.499	-0.131
cytochrome P450, subfamily I (dio	2.202	-0.047	-0.231	-0.604	-0.234	-0.713	-0.836	-1.99	-1.558	-1.474	0.425	0.622	-0.872	-1.706		-0.579
S100 calcium binding protein A8 (c	-1.641	0.014	-1.05	4.29	-0.162	-0.899	-1.625	-1.818	4	-2.268	-1.165	-1.2	-1.797	-1.329		-1.087
signal transducer and activator of ti	ranscriptior	-0.2855	-0.6135	2.59	-0.0555	-0.4895	-0.3215	-1.224	-1.718	-1.387	-0.4765	-0.7565	-1.143	-0.8755		-0.9545
gamma-aminobutyric acid (GABA)	A receptor	3.044	0.6205	-1.498	0.076	0.153	-0.766	-0.789		-1.485	-0.69	0.0445	-0.823	-0.104		-0.235
EphB6 AA609284	0.000	1 000	0.6365	-1.062	-0.5295	-0.1345	0.040	-0.6565	0.045	0.407	1 007	-0.0415	-0.0885	0.0535	0.500	-0.3235
aldo-keto reductado fomily 1 mamb	-2.088	-1.606	-1.596	-0.434	1 740	-1.269	-0.649	-1.901	-2.045	-3.167	-1.037	-0 034	-0.996	-1.008	0.538	-1.344
ado-keto reductase ranny 1, menti		0.03	0.835	-0.435	0.562	0.111	-0.558	-1.21	0.05	-1.347	0.002	-0.834	0.712	0.104		-0.290
au opnill VV / 4555	-1.28	-0.1755	-0.322	-0.467	-0.2525	-0.5155	-1.05	-0.048	-0.95	- 1.333	-0.903	-0.4845	0.469	-0 7125	0 1/135	-0.2125
echinoderminicrotabale associated	=0.0045	-0.1733	1 527	0.1393	-0.2383	1 157	-1.03	1.095	-0.1395	2 1 9 1	1 5 4 7	-0.4843	0.0043	-0.7135	0.1435	-0.2123
ERO1-like (S. cerevisiae) AA1868	0 3395	0.4075	-0.6115	-0.3415	-1.07	-0.4095	-0.8285	-0.4075	-0.4405	-0.4075	-1.335	-0.2325	-0.705	-0 7125		-0.3035
**hypothetical protein FL J20624 R	-0.232	-0.341	0.0110	-0.153	-0.446	0.838	-1.658	0.466	-0.553	-0.909	-0.199	-0.662	-0.334	0.371	-0.029	0.617
forkhead box D1 AA069132	-1.192	-0.07	-0.666	-0.596	0.02	0.388	-0.54	0.11	-0.000	-1.016	-1.28	-1.077	-0.051	-0.477	-0.561	0.796
met proto-oncogene (hepatocyte g	rowth factor	receptor)	AA410591	-1.151	-0.373	0.228	0.04	0.322		-0.654	-0.23	0.176	0.74	0,446	2.001	0.177
ESTs. Weakly similar to TRHY HU	MAN TRICH	-0.137	-0.378	-0.339	0.263	0.618	0.02	0.518		-1.656	1.242	0.885	0.19	0.389		-0.164
ESTs AA149250		5.101	5.0.0	1.847	-0.295	0.293	0.02	-0.215		-1.641	-0.868	-0.33	-0.395	0.21		-0.185
Homo sapiens mRNA; cDNA DKFZ	p564O2364	3.135	0.0215	0.3145	0.7915	-0.2245	1.343	-0.0505		-0.1155	1.125		-0.1125	-0.5255		-0.3445
hypothetical protein FLJ10337 AA1	-0.6325	0.8375	0.2155	-0.7935	-0.1815	-0.3315	-0.4795	-0.6435	-0.6095	-0.4435	0.2225	0.0585	-0.3355	0.2375		0.1205
integral membrane protein 3 AA034	-0.998	-0.313	0.52	-1.106	-0.005	-0.618	-0.901	-0.847	-2.533	-2.828	-1.247	-0.647	-1.005	-1.651	-0.119	-0.465

Mutability of Cancer

Cancer DNA is inherently unstable.

Changes over time and under the pressure of drugs.

Why does this matter?

40,000 Die of Metastatic Breast Cancer Yearly

2015- original breast cancer

2019 - metastasis in liver, brain

 We have the 2015 tumor for testing and "precision medicine"

However... The 2015 tumor is not the problem, the 2019 tumors are.

Cancer Evolves

These are not the same

Metastatic profiles differ by subtype

- 415 metastatic samples from 354 patients
- Used CLIA Next Gen panel testing
- 62% of patients had a mutation
- Mutational spectrum differs by subtype

Roy-Chowdhury, Meric-Bernstam, Am J Clin Path, 2015

ל by:

IFigure 1I Distribution of mutations with relative frequencies seen in the four clinically relevant therapeutic groups. **A**, ER/ PR+HER2-: n = 132, No. of mutations = 176. **B**, ER/PR+HER2+: n = 20, No. of mutations = 22. **C**, ER/PR-HER2+: n = 4, No. of mutations = 6. **D**, ER/PR/HER2-: n = 64, No. of mutations = 77.

🛣 Penn Medicine

PENN METAMORPH Study

Understanding biology of the metastatic disease

RESEARCH ENGINE:

Samples to research lab to study biology of metastasis Information used to develop new clinical trials

Mutation can be shed into the blood

Patients with concurrent tumor biopsy and blood sample

- 18%: change in subtype (receptors)
- Forest Green: same in tumor and blood
- Red: Only in tumor
- Purple & Gray: Found only in the blood

"Liquid biopsy"

the cure is w

ABRAMSON CANCER CENTER

Maxwell, DeMichele, BCRT, 2017

How Could this Affect Curability?

If you knew a sub-cancer was important.

And you knew what drug it was sensitive to.

You would look for and treat that needle in the haystack.

Do mutations predict response?

Gene	Therapy	Trial(s)	Association		
BRCA 1, 2	PARP inhibitors	OLYMPIAD, ICEBERG	Positive predictor GERMLINE		
	Platinums	TNT	Positive predictor		
ERBB2 (Her2)	Trastuzumab		N/A		
	Neratinib	Case report	Studies ongoing		
PIK3CA	Everolimus	BOLERO-1, 2, 3	Mixed		
	Palbociclib	PALOMA-3	No association		
ESR-1	AI	SoFEA	Negative predictor		
	Fulvestrant	FERGI, SoFEA	Mixed		
	Palbociclib	PALOMA-3	No association		

"Mutational Load"

- Number of mutations on panel testing of tumor or plasma tumor DNA
- 7.05 months low
- 4.4 months high HR 0.31, p=0.0112

the cure is

May predict response to immunotherapy

Maxwell, DeMichele, BCRT, 2017

New Treatment Strategies: Are they getting us closer to "cure"?

Showing improvements in survival in clinical trials is tricky

- Treatment at early point in trajectory
- Response time small proportion of overall time
- Impact of subsequent therapy and crossover

G1/S Checkpoint in Breast Cancer

	Dose	Schedule	Indications:
Palbociclib	125 mg	3 weeks on/1	 First line with AI Progressing after ET, with fulvestrant
(Ibrance, Pfizer)	daily	week off	
Ribociclib	600 mg	3 weeks on/1	 First line with AI Progressing after ET, with fulvestrant Premenopausal breast cancer
(Kisqali, Novartis)	daily	week off	
Abemaciclib (Verzenio, Lilly)	150 or 200 mg twice daily	Continuous	 First line with AI Progressing after ET, with fulvestrant Monotherapy after progression on ET and CT

JO

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Overall Survival with Palbociclib and Fulvestrant in Advanced Breast Cancer

N.C. Turner, D.J. Slamon, J. Ro, I. Bondarenko, S.-A. Im, N. Masuda, M. Colleoni, A. DeMichele, S. Loi, S. Verma, H. Iwata, N. Harbeck, S. Loibl, F. André, K.P. Theall, X. Huang, C. Giorgetti, C. Huang Bartlett, and M. Cristofanilli

Living longer overall

 Absolute improvement in median OS in the palbociclib arm vs the placebo arm was 6.9 months.

Prolonging sensitivity to hormonal therapy

In patients with sensitivity to prior ET, absolute improvement in median OS in the palbociclib arm vs the placebo arm was 10.0 months.

Delaying time to chemotherapy

TCT=time to chemotherapy.

the cure is w

ABRAMSON CANCER CENTER

What should we do when the cancer gets resistant?

HER2-Positive Metastatic Breast Cancer

- Multiple anti-HER2 drugs approved
- Longevity <u>after</u> metastatic disease increasing!

Not a cure, but getting better

Lessons from a Trial About Drug Response

Newly diagnosed women with HER2+ disease

50% of the women in each arm

Chemo + 1 antiHER2 drug Chemo + 2 antiHER2 drugs

How much better are 2 antiHER2 drugs than 1?

Response to Therapy: The Whole Story

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Molecular Heterogeneity and Response to Neoadjuvant Human Epidermal Growth Factor Receptor 2 Targeting in CALGB 40601, a Randomized Phase III Trial of Paclitaxel Plus Trastuzumab With or Without Lapatinib

the cure

Factor	Response
Drug therapy: Two vs one drug	38% 🛧
Better vs worse drug	60% 🛧
HER2-Enriched molecular subtype	300% 🛧
Immune cells in tumor	60% 🛧

Drugs mattered... but not as much as cancer biology and patient factors

Triple Negative Metastatic Breast Cancer

- Defined by the absence of targeted therapy
 - Chemotherapy is mainstay of treatment
- Improved survival recently but not by much

The subtype with the most need

Triple Negative Breast Cancer

Very few had good tumor control with anti-EGFR therapy.

- Sometimes the target gene wasn't there
- Sometimes the gene was there but didn't seem to be working
- Sometimes it looked like it should have worked, but didn't...
 - The tumor was smarter than we were, and had a back door in.

We need to understand each cancer better to truly develop personalized cancer therapy

Getting the Immune System to Help

Importance of the Immune System

- **1.** It already exists in the body
- 2. It is designed to attack foreign invaders (infections...cancer?)
- **3.** It turns on and off naturally
- 4. The cells are stable, they don't mutate all the time
- But...
- Cancer isn't really foreign
- The immune system is ridiculously complex
- It sometimes gets it wrong (autoimmune diseases)

Newsweek 1985

~ 30 Years Later

Modality	Phase I	Phase II	Phase III	Approved?	Comment
CTLA-4				No	Minimal activity
PD-1/PD-L1	_	2		yes	ORR <20% in TNBC; combinations being tested
Therapeutic vaccines			X	No	Negative randomized studies; combinations critical
Prevention vaccines				No	First-in-human studies underway
T-cell agonists				No	Unlikely to offer single- agent activity in breast cancer
Adoptive T cells				No	Initial CAR T-cell studies underway

Now approved with chemo in triple negative breast cancer

Cancer hides from the immune system using an invisibility cloak

T-cells are designed to recognize and kill tumor cells

T-cells are designed to recognize and kill tumor cells

Tumor PD-L1 binds to T cell PD-1 inactivates T-cells

Drugs that inactivate PD-1 or PD-L1 prevent tumor cells from inactivating Tcells

The New Era Dawns

The NEW ENGLAND JOURNAL of MEDICINE

Metastatic untreated triple negative breast cancer

Chemotherapy + anti-PDL1 antibody

Chemotherapy + placebo

Real Improvement in PDL1+ Triple Negative Disease

"COLD" AND "HOT" TUMORS

🐺 Penn Medicine

Converting Cold Tumors to Hot

Curing Metastatic Breast Cancer May Need a Multipronged Approach

Breast Cancer Research is a Partnership

