

Biomarker testing for early-stage breast cancer

Molecular Profiling for Early Stage HR+/HER2- Breast Cancer

April 11th, 2025 Living Beyond Breast Cancer Webinar

Seth A. Wander, MD, PhD
Assistant Professor of Medicine
Harvard Medical School
Massachusetts General Hospital
swander@mgh.harvard.edu

Disclosures

 Consulting/Advisory Board: Foundation Medicine, Veracyte, Hologic, Eli Lilly, Biovica, Pfizer/Arvinas, Puma Biotechnology, Novartis, AstraZeneca, Genentech, Regor Therapeutics, Menarini

Education/Speaking: Eli Lilly, Guardant Health, 2ndMD

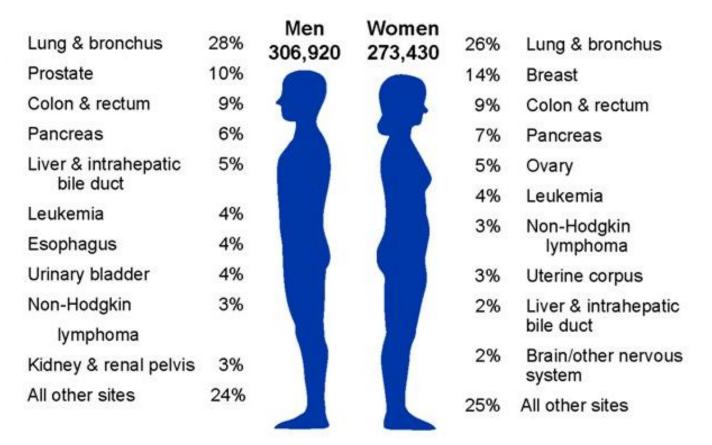
 Institutional Research Support: Genentech, Eli Lilly, Pfizer/Arvinas, Nuvation Bio, Regor Therapeutics, Sermonix

Molecular Profiling for HR+ Early Breast Cancer

- General principles and therapeutic approach
- Mammaprint Assay (Agendia)
- Oncotype Risk Score (Exact Sciences)
- Prosigna Assay (Veracyte)
- Summary and Future Directions

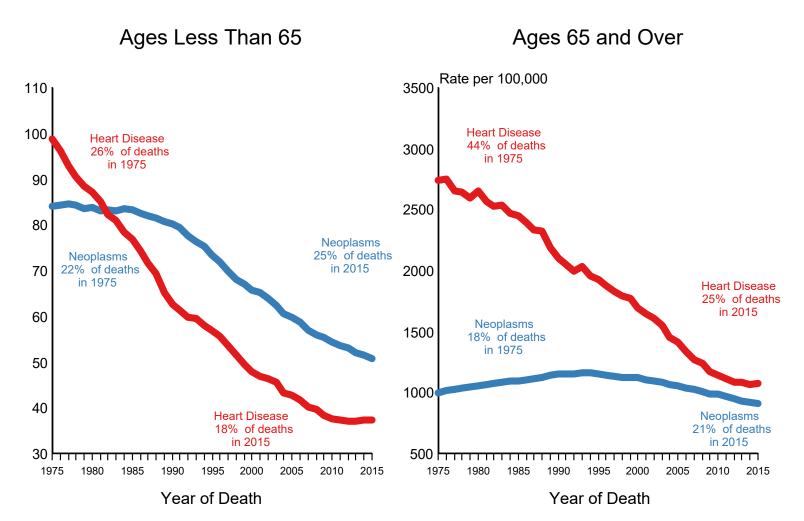
Molecular Profiling for HR+ Early Breast Cancer

- General principles and therapeutic approach
- Mammaprint Assay (Agendia)
- Oncotype Risk Score (Exact Sciences)
- Prosigna Assay (Veracyte)
- Summary and Future Directions

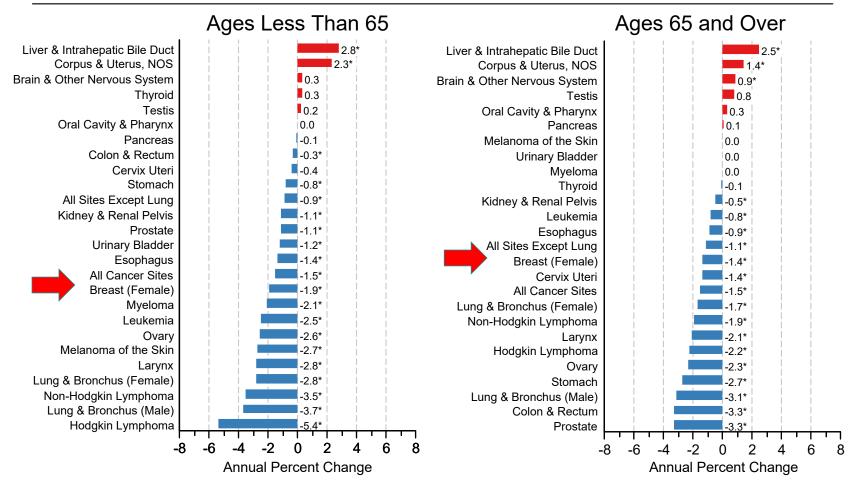

Epidemiology

Breast cancer rank (Female):

Incidence – 1st


Estimated Cancer Deaths in the US in 2013

Mortality – 2nd


Us Death Rates, 1975-2015 Heart Disease compared to Neoplasms, by age at death

Source: US Mortality Files, National Center for Health Statistics, Centers for Disease Control and Prevention. Rates are per 100,000 and age-adjusted to the 2000 US Std Population (19 age groups - Census P25-1103).

Trends in US Death Rates by Age Group and Primary Cancer Site 2006-2015

Source: US Mortality Files, National Center for Health Statistics, Centers for Disease Control and Prevention. Underlying rates are per 100,000 and age-adjusted to the 2000 US Std Population (19 age groups - Census P25-1103). For sex-specific cancer sites, the population was limited to the population of the appropriate sex.

^{*} The APC is significantly different from zero (p<.05).

Staging

Grade ≠ Stage

Grade – pathologic assessment of tumor differentiation

Stage -

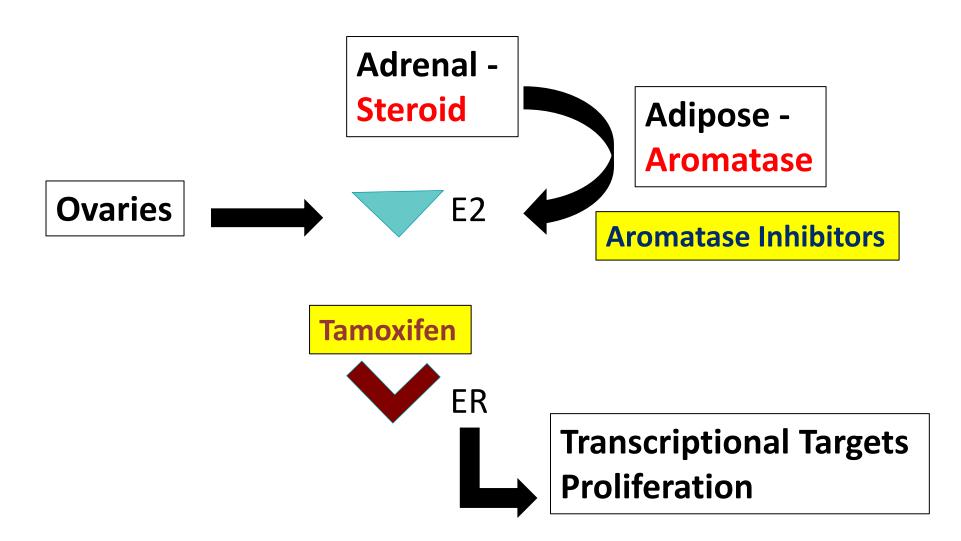
- Tumor size (T)
- Lymph node status (N)
- Distant metastatic disease (M)
- PLUS (2018): receptor status (ER, PR, HER2), genomic recurrence risk score, grade

Local Therapy: Surgery, Radiation

Mastectomy = Lumpectomy + XRT

Indications for Mastectomy:

- Extent of disease v cosmetic outcome
- BRCA carrier (prophylactic bilateral)
- Inability to achieve negative margins
- Patient preference


Post-Mastectomy Radiation (PMRT):

- Positive margins (often chest wall)
- Positive lymph nodes

Systemic Therapy: Antiestrogens

Adjuvant antiestrogen = 50% reduction in long-term recurrence risk

Systemic Therapy: Antiestrogens

Myalagia

Tamoxifen Aromatase Inhibitors

Pre or Post-menopausal Post-menopausal

Hot Flashes

Vaginal Dryness

Transaminitis • Fatigue

DVT Osteopenia

Secondary uterine malignancy

Key Questions:

- What is the recurrence risk for any given patient/tumor?
- Who gets benefit from chemotherapy in addition to antiestrogens?
- Who benefits from extended duration antiestrogen therapy (10y v 5y)?
- Which pre-menopausal patients should have ovarian suppression?

Molecular Profiling for HR+ Early Breast Cancer

- General principles and therapeutic approach
- Mammaprint Assay (Agendia)
- Oncotype Risk Score (Exact Sciences)
- Prosigna Assay (Veracyte)
- Summary and Future Directions

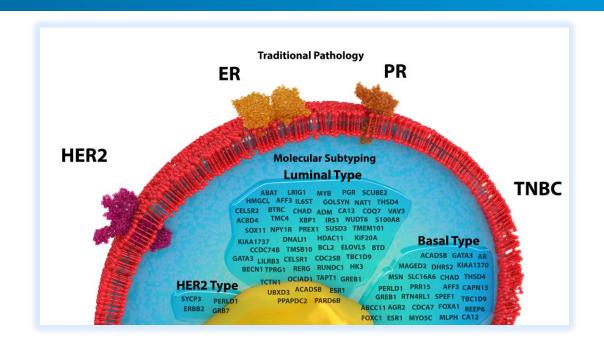
The MammaPrint Index (MPI)

4 MammaPrint Risk Categories

MammaPrint: 70 gene recurrence risk panel.

More likely to recur early

Less likely to recur early



80-gene molecular subtyping assay

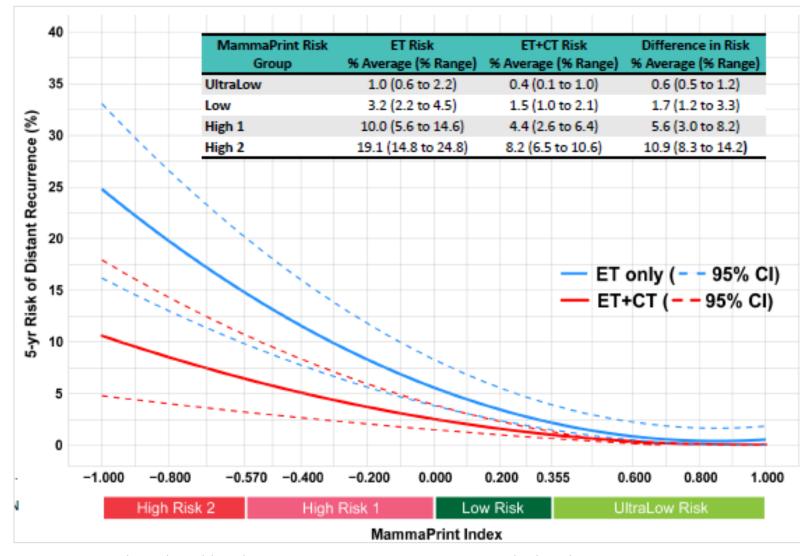
BluePrint:

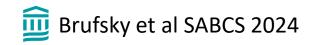
80 gene panel exploring signaling pathways driving tumor growth.

BluePrint Genomic Subtypes

B A S A L - T Y P E	HER2-TYPE	LUMINAL-TYPE
Basal-type (ER-)	HER2-type	Luminal-type A
Basal-type (ER+)		Luminal-type B

BluePrint stratifies up to 23% of tumors into a <u>different molecular subtype compared</u> with IHC/FISH

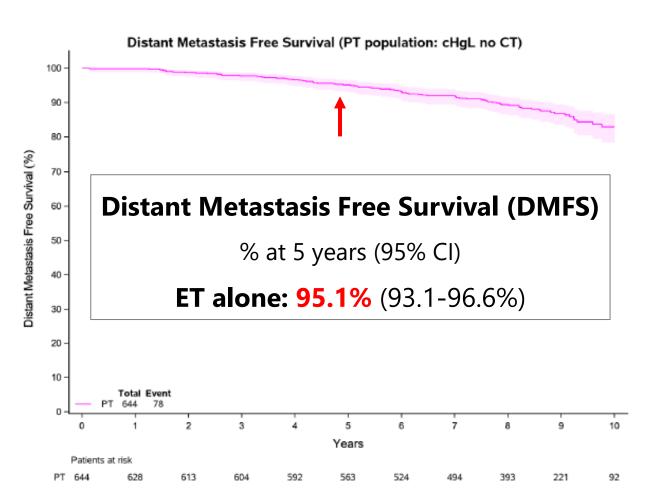


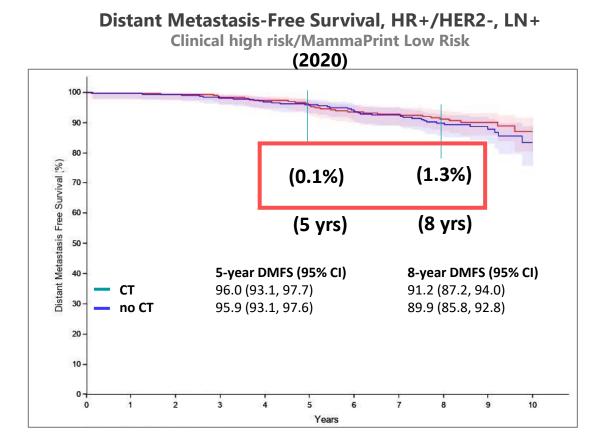


Mammaprint and Adjuvant Chemotherapy early-stage breast cancer

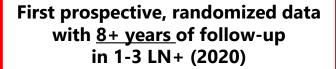
FLEX Study: positive predictive utility of MammaPrint in predicting adjuvant chemo sensitivity

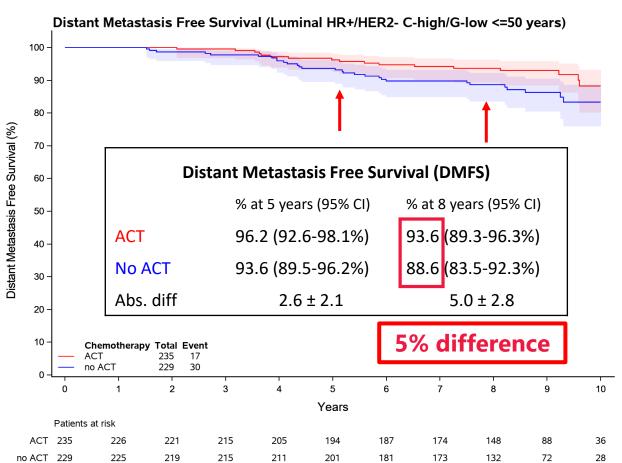
Risk of 5-year DRFI for patients receiving ET vs ET+CT across the MammaPrint Index



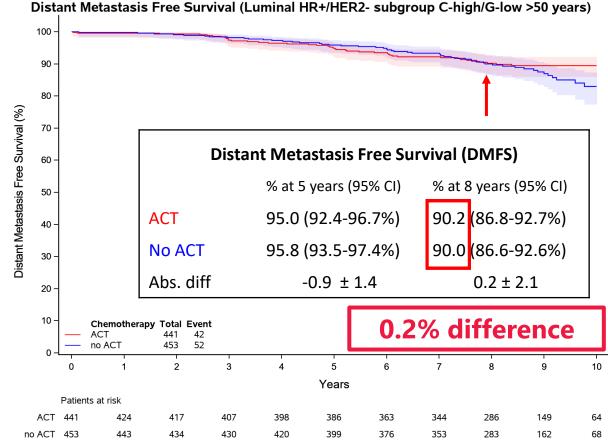


Mammaprint and lack of adjuvant CT benefit

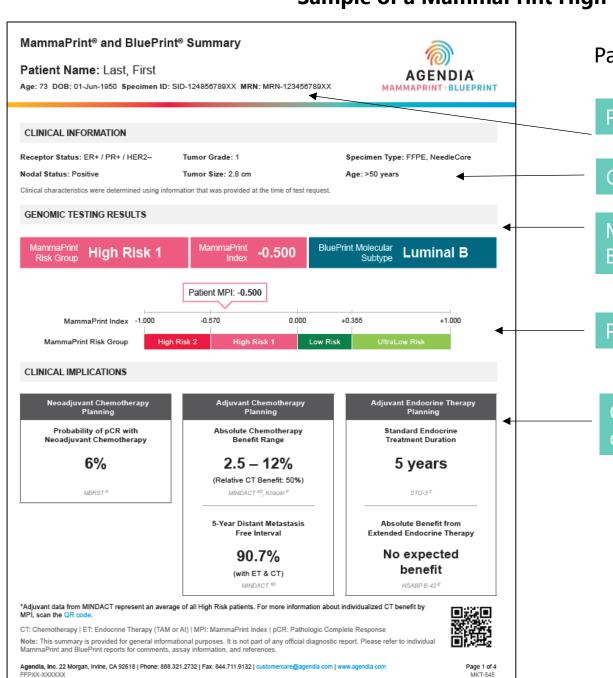

<u>Level 1A Evidence</u> from the MINDACT Trial show MammaPrint Low Risk may safely avoid chemotherapy



Mammaprint and lack of adjuvant CT benefit


Does Age Affect Benefit of Chemotherapy in MammaPrint Low Risk?

Age ≤50 years



Age >50 years

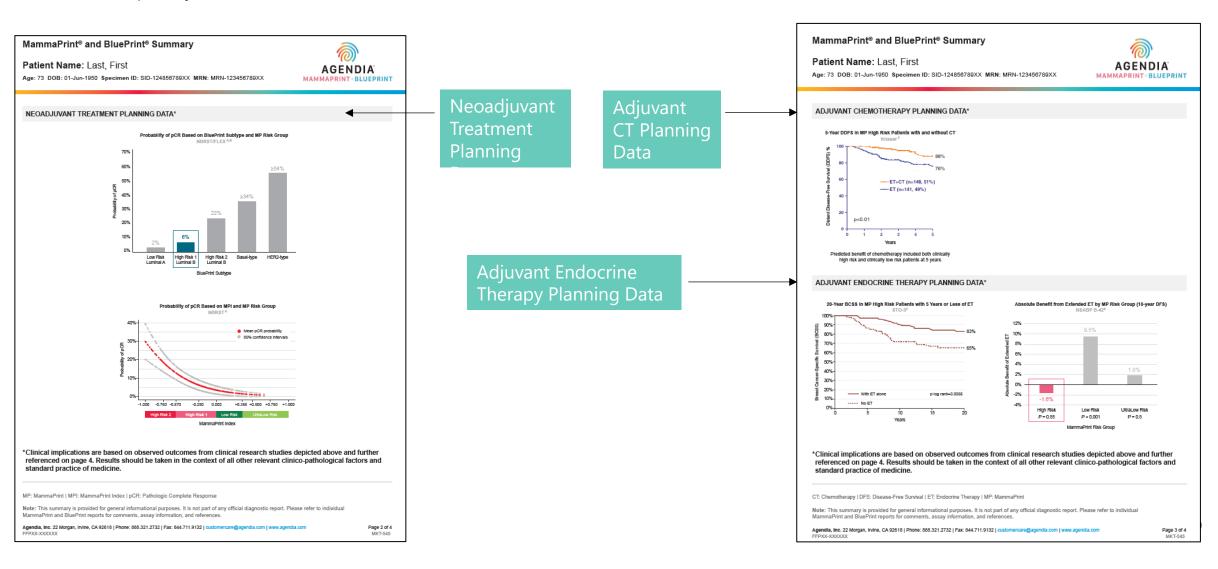
Sample of a MammaPrint High 1, Luminal B summary variation

Page 1: Summary of MammaPrint + BluePrint assay results

Patient Information

Clinical Information (from provided pathology

MammaPrint Risk Group, MammaPrint Index, BluePrint Molecular Subtype (if ordered)


Patient-specific MammaPrint Index

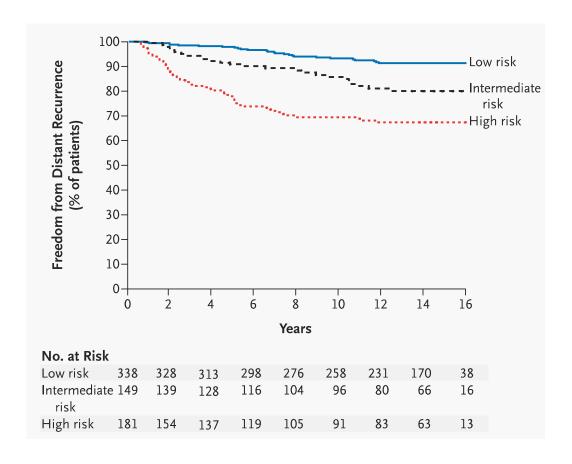
Clinical implications derived from genomic analysis dependent upon nature of sample received

Sample of a MammaPrint High 1, Luminal B summary variation

Page 3: Adjuvant CT & ET/EET Treatment Planning Data

Page 2: Neoadjuvant Treatment Planning Data (pCR by BluePrint, if ordered)

Molecular Profiling for HR+ Early Breast Cancer


- General principles and therapeutic approach
- Mammaprint Assay (Agendia)
- Oncotype Risk Score (Exact Sciences)
- Prosigna Assay (Veracyte)
- Summary and Future Directions

Oncotype Corresponds to Distant Recurrence

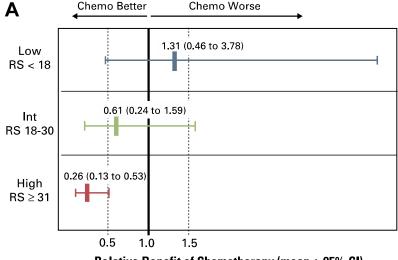
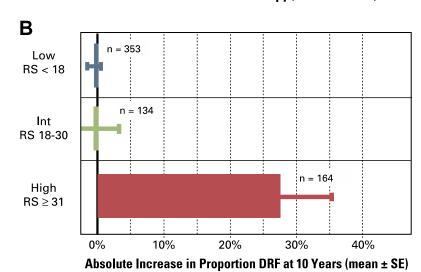
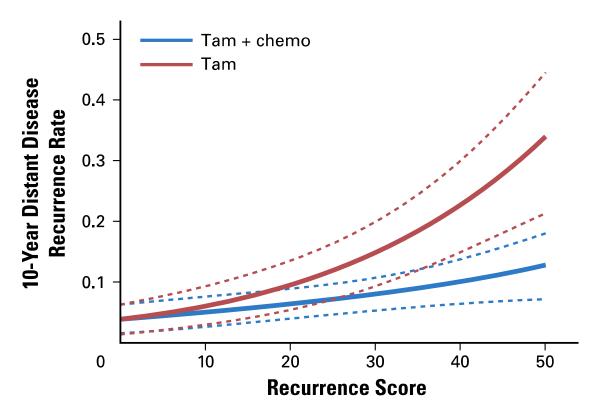
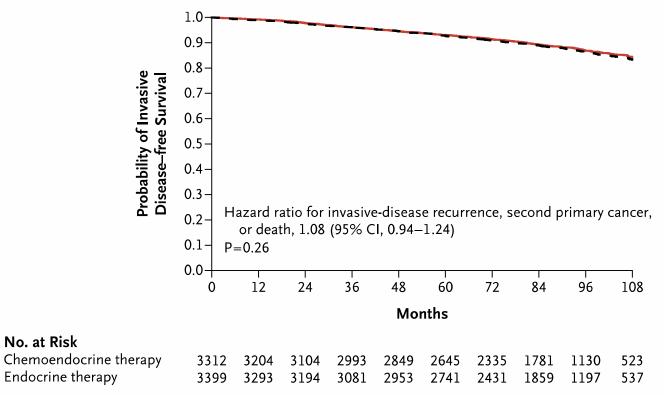

- Oncotype: 21 gene expression assay (genomic mediators of ER/PR expression and cellular proliferation, among others)
- Increasing rates of distance recurrence with rising oncotype score
- Valid in multivariate analysis (independent of age, tumor size)

Table 1. Kaplan-Meier Estimates of the Rate of Distant Recurrence at 10 Years, According to Recurrence-Score Risk Categories.*			
Risk Category	Percentage of Patients	Rate of Distant Recurrence at 10 Yr (95% CI)†	
		percent	
Low	51	6.8 (4.0–9.6)	
Intermediate	22	14.3 (8.3–20.3)	
High	27	30.5 (23.6–37.4)‡	



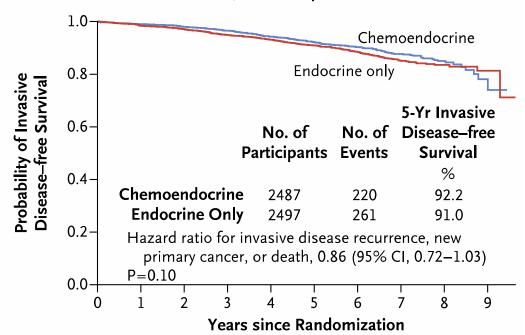

Oncotype and Chemotherapy Benefit (retrospective)



 Oncotype is an independent predictor of chemo benefit on multivariate analysis

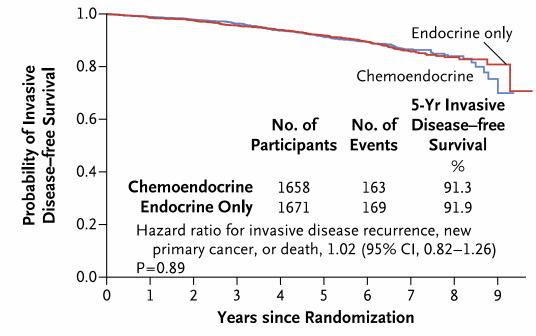
TAILORx: Chemotherapy impact for oncotype <25

A Invasive Disease-free Survival



and Assigned Treatment among Women 50 Years of Age or Younger in the Intention-to-Treat Population.*			
End Point and Treatment Group	Rate at 5 Yr	Rate at 9 Yr	
	perd	cent	
Invasive disease–free survival†			
Score of ≤10, endocrine therapy	95.1±1.1	87.4±2.0	
Score of 11–15, endocrine therapy	95.1±1.1	85.7±2.2	
Score of 11–15, chemoendocrine therapy	94.3±1.3	89.2±1.9	
Score of 16-20, endocrine therapy	92.0±1.3	80.6±2.5	
Score of 16–20, chemoendocrine therapy	94.7±1.1	89.6±1.7	
Score of 21–25, endocrine therapy	86.3±2.3	79.2±3.3	
Score of 21–25, chemoendocrine therapy	92.1±1.8	85.5±3.0	
Score of ≥26, chemoendocrine therapy	86.4±1.9	80.3±2.9	
Freedom from recurrence of breast cancer at a distant site			
Score of ≤10, endocrine therapy	99.7±0.3	98.5±0.8	
Score of 11–15, endocrine therapy	98.8±0.6	97.2±1.0	
Score of 11–15, chemoendocrine therapy	98.5±0.7	98.0±0.8	
Score of 16–20, endocrine therapy	98.1±0.7	93.6±1.4	
Score of 16–20, chemoendocrine therapy	98.9±0.5	95.2±1.3	
Score of 21–25, endocrine therapy	93.2±1.7	86.9±2.9	
Score of 21–25, chemoendocrine therapy	96.4±1.2	93.4±2.3	
Score of ≥26, chemoendocrine therapy	91.1±1.6	88.7±2.1	

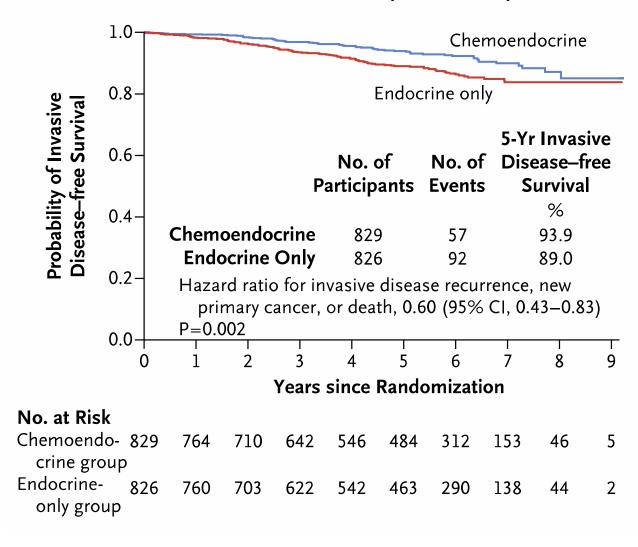
Table 3. Estimated Survival Rates According to Recurrence Score


Oncotype is Valid in Node-Positive Post-menopausal

A Invasive Disease-free Survival, All Participants

No. at Risk Chemoendo- 2487 2279 2123 1940 1691 1477 971

crine group Endocrine- 2497 2328 2177 1965 1738 1493 969 502 181 23 only group B Invasive Disease–free Survival, Postmenopausal Participants


No. at Risk

Chemoendo- 1658 1515 1413 1298 1145 993 659 358 129 14 crine group
Endocrine- 1671 1568 1474 1343 1196 1030 679 364 137 21 only group

Controversy re: Oncotype in N+ PRE-menopausal

C Invasive Disease-free Survival, Premenopausal Participants

Shows the individualized risk of distant recurrence when treated with endocrine therapy alone.

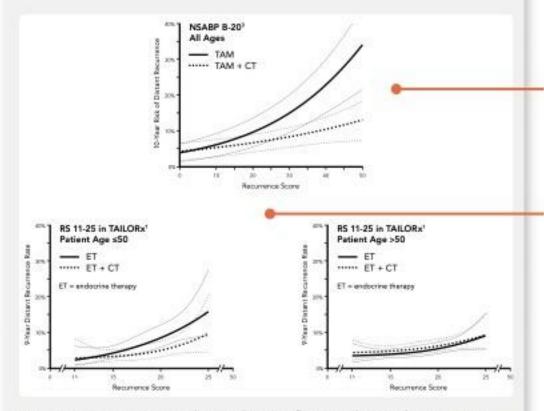
Oncotype DX Breast Recurrence Score® Report Node Negative

EXACT SCIENCES

DOE, JANE EUZABETH

Date of Birth: 01 - Jan - 1951

Goode: Female:


As Report Number: OR123454789-01

Report Date: 12-July-2022

Specimen Source/ID: Breest/SP-16, 0123456

Ordering Physician Dr. First Name I. Ordering-Physician-Last-Name

Estimated Chemotherapy Benefit for Individual Recurrence Score Results second line for localization

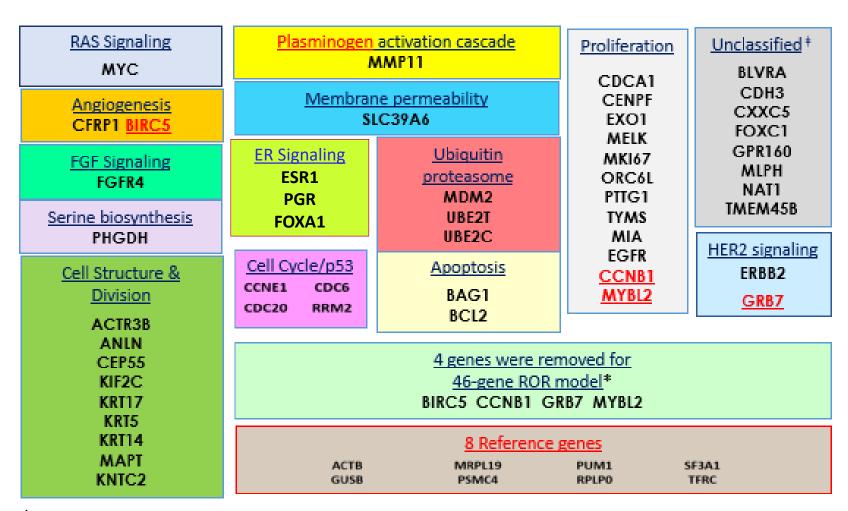
Recurrence Score ranges shown above reflect randomized patients in NSABP B-20 and TAILORx.

PAGE 2 OF 2

The NSABP B-20 study randomized patients to treatment with TAM alone or TAM + CT and was the first validation study to demonstrate that the Breast Recurrence Score® test is predictive of chemotherapy benefit in node-negative patients.

The TAILORx study is a prospective, randomized trial in which patients with Recurrence Score® results between 11-25 were randomly assigned to ET alone or CT + ET. Treatment with ET alone was found to be non-inferior to CT + ET across patients of all ages.

An exploratory subgroup analysis in patients <50 years of age showed increasing chemotherapy benefit with increasing Recurrence Score* result.



Molecular Profiling for HR+ Early Breast Cancer

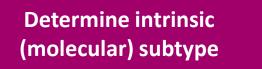
- General principles and therapeutic approach
- Mammaprint Assay (Agendia)
- Oncotype Risk Score (Exact Sciences)
- Prosigna Assay (Veracyte)
- Summary and Future Directions

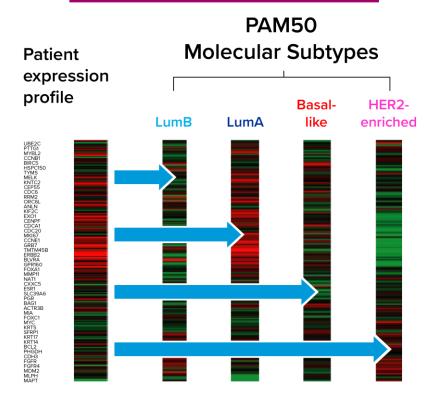
Prosigna Assay: extensively researched 50 genes (PAM50) used for determination of molecular subtypes

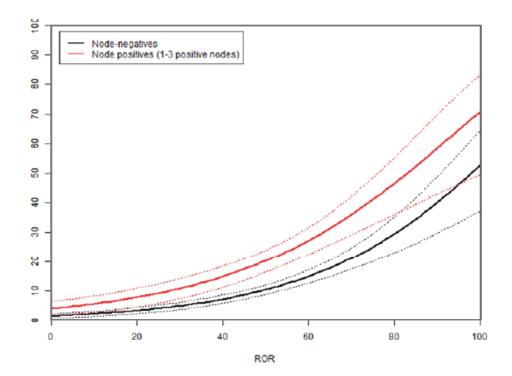
Single tube hybridization

- Digital counting
- FDA cleared for consistent performance across assay sites
- Robustness allows an approved kit formulation
- Over 400
 publications using
 PAM50 in PubMed

[†] Genes that are involved in many different pathways and it was difficult to classify them into a single pathway. Data on file.

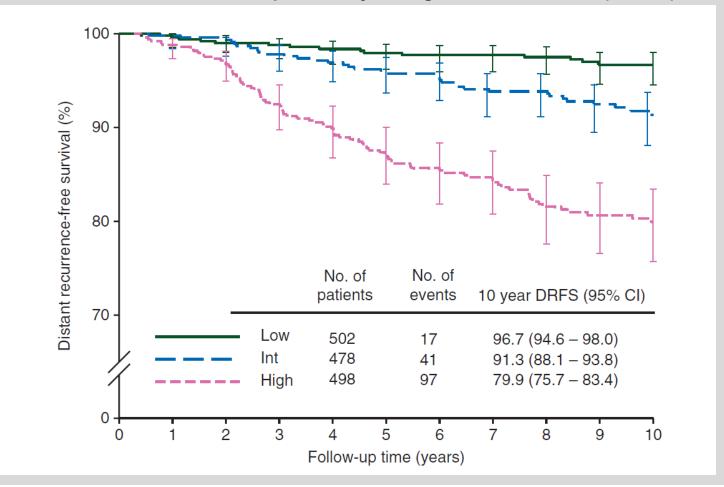



Prosigna incorporates clinical and pathological features for individualized risk assessment


- Gene expression data weighted with clinical variables
- Scale of 1-100 related to probability of distant recurrence

Calculated correlation to PAM50 intrinsic subtypes Add proliferation score and tumor size

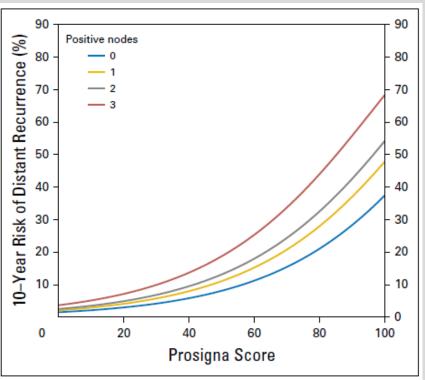
Estimate 10y Risk of Distant Recurrence on Endocrine Therapy Alone: N- and N+



ABCSG8 trial: Prosigna assay discriminates distinct recurrence risk

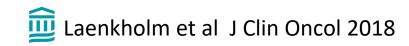
- Cohort
 - 1,047 node-negative
 - 431 node-positive patients
 - Postmenopausal
- Methodology: FDA consulted, prospective study with a Primary endpoint of distant recurrence free survival (DRFS)
- Follow up: 10.8 years median follow-up
- The Prosigna Score adds prognostic information on DRFS

Distribution of DRFS for all patients by Prosigna score: N = 1478 (95% CI)


Population cohort trial of Prosigna's prognostic performance for DR at 10y

"At 10 years, patients with any nodal status (ie, 0-3 positive nodes) and a low Prosigna score who, without chemotherapy, were allocated to 5 years of adjuvant endocrine treatment had a DR rate of 4.3%."

Population-based Cohort


- 1,163 node-negative
- 1,395 node-positive patients
- Postmenopausal
- Methodology:
 Prospectively-defined analysis plan with primary endpoint of time to DR
- Follow up: 9.25-year median follow-up

Continuous relationship between the 10-year risk of DR and the Prosigna Score by number of positive nodes

DR by Prosigna Risk Group Separated by Nodal Status

	Risk Category	10-Year DR [95% CI]	P values	
Nodal Status			Any Difference	Difference from Intermediate
Node- Negative (n=1132)	High	17.8 [14.0-22.0]	<0.0001	<0.0001
	Intermediate	7.3 [4.8-10.6]		
	Low	5.0 [2.9-8.0]		0.1543
Node- Positive (1-3 nodes) (n=1358)	High	21.9 [18.9-25.1]		
	Low (ROR ≤ 40)	4.8 [3.1-6.9]	<0.0001	NA

Intrinsic Subtypes: Methodology Matters

PAM50- and immunohistochemistry-based subtypes of breast cancer and their relationship with breast cancer mortality in a population-based study (Long Island Breast Cancer Study)

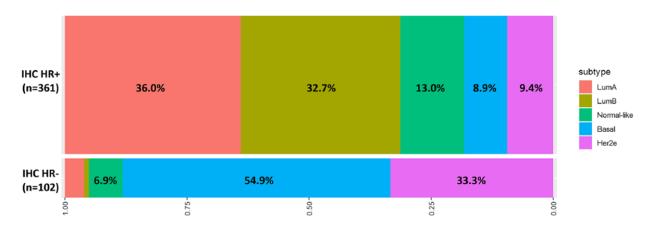
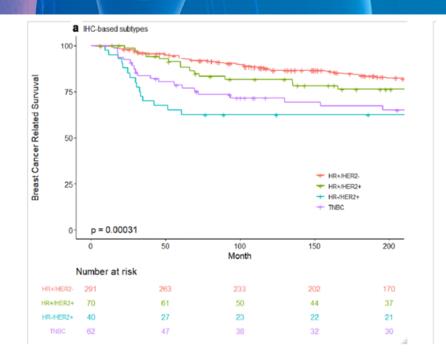
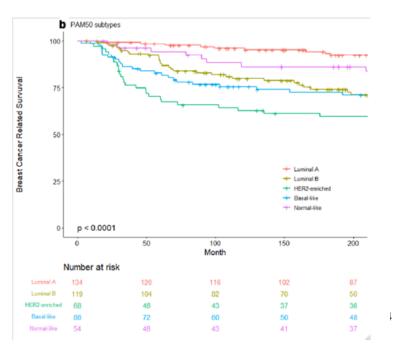




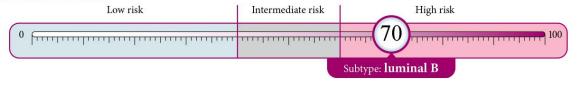
Fig. 2 Distribution of PAM50 subtypes by IHC-based HR status

Subtyping by nCounter based assay.

Patient Specimen Run Set ID: Prosigna Sample 2
Tumor Size: <= 2cm ID #: n0-l2-70-HR-LB
Lymph Nodes: node-negative Date Reported: September 20, 2017

Prosigna

ID #: n0-l2-70-HR-LB

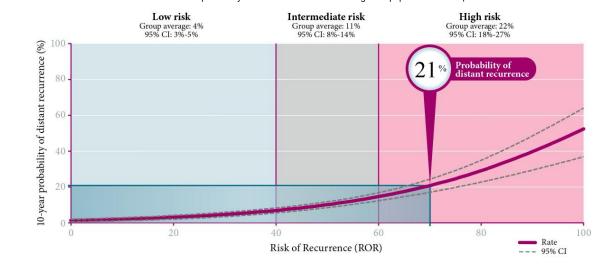

Tumor Size: <= 2cm

Lymph Nodes: node-negative

Breast Cancer Assay

Assay Description: The Prosigna® breast cancer gene signature assay measures the expression of 50 different genes to identify subtype and report a Risk of Recurrence Score (ROR), which is used to assign the patient to a predefined risk group. These results are derived from a proprietary algorithm based on the PAM50 gene signature, intrinsic subtype, and clinical variables including tumor size and nodal status.

Risk of Recurrence*:



^{*} The ROR ranges from 0 through 100 and correlates with the probability of distant recurrence (DR) in the tested patient population. The risk classification is provided to quide the interpretation of the ROR using cutoffs related to clinical outcome.

Probability of Distant Recurrence:

In the clinical validation studies, patients who were node-negative, luminal B subtype, with an ROR score of 70 were in the high-risk group. This group averaged a 22% probability of distant recurrence at 10 years.

The Prosigna® algorithm has been validated by 2 random ized clinical trials including more than 2400 patients with varying rates of distant recurrence. An analysis of these 2 clinical validation studies shows that the probability of distant recurrence for the high-risk population is 22%.†

Patient

Tumor Size: <= 2cm

Lymph Nodes: node-negative

Specimen

ID #: n0-l2-70-HR-LB

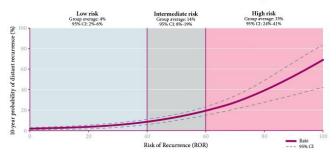
Date Reported: September 20, 2017

Run Set ID: Prosigna Sample 2

Comments: Comment for n0-I2-70-HR-LB

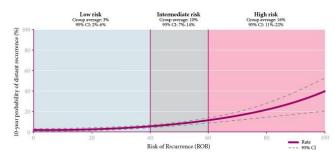
ID #: n0-[2-70-HR-LB Tumor Size: <= 2cm Lymph Nodes: node-negative

Clinical Validation Studies: Prognosis for node-negative, luminal B, high-risk breast cancer patients was determined based on the rate of distant recurrence (DR) of this population in 2 prospective-retrospective clinical studies. These studies analyzed more than 2400 samples from postmenopausal women with early stage, hormone receptor-positive breast cancer, using a prospectively defined analysis plan. The data shown are for postmenopausal women with early stage, hormone receptor-positive breast cancer who received 5 years of endocrine therapy after surgical resection of the primary tumor.


Rate of Distant Recurrence (DR) for Node-Negative Patients				
Subtype	Luminal A [95% CI]	Luminal B [95% CI]	HER2-enriched	Basal-like
Rate of DR	5% [4%-7%]	18% [15%-22%]	*	*

^{*}There were insufficient numbers of basal-like and HER2-enriched patients in these studies to produce data.

Subtype and Prognosis:


Intrinsic subtype is related to prognosis in the tested patient population. The most common subtypes of breast cancer are the luminal subtypes: luminal A and luminal B. In the combined analysis of 2 clinical validation studies of hormone receptor-positive patients, 68% of the tested patient population was found to be luminal A, and 27% was luminal B.¹ The gene expression pattern of these subtypes resembles the luminal epithelial component of the breast.³ These tumors are characterized by high expression of estrogen receptor (ER), progesterone receptor (PR), and genes associated with ER activation.³ Luminal A breast cancers exhibit low expression of genes associated with cell cycle activation and generally have a better prognosis than luminal B.

TransATAC clinical validation study1:

The TransATAC study analyzed 1007 samples using a prospectively defined analysis plan. Data shown are for postmenopausal stage I or II, nodenegative, hormone receptor-positive breast cancer patients that received 5 years of endocrine therapy.*

ABCSG-8 clinical validation study²:

The ABCSG-8 study analyzed 1478 samples using a prospectively defined analysis plan. Data shown are for postmenopausal stage I or II, nodenegative, hormone receptor-positive breast cancer patients that received 5 years of endocrine therapy.*

For more information, visit PROSIGNA.com or e-mail info@prosigna.com

*See Package Insert for further information on therapy regimens and tested patient population. It is unknown whether these findings can be extended to other patient populations or treatment schedules.

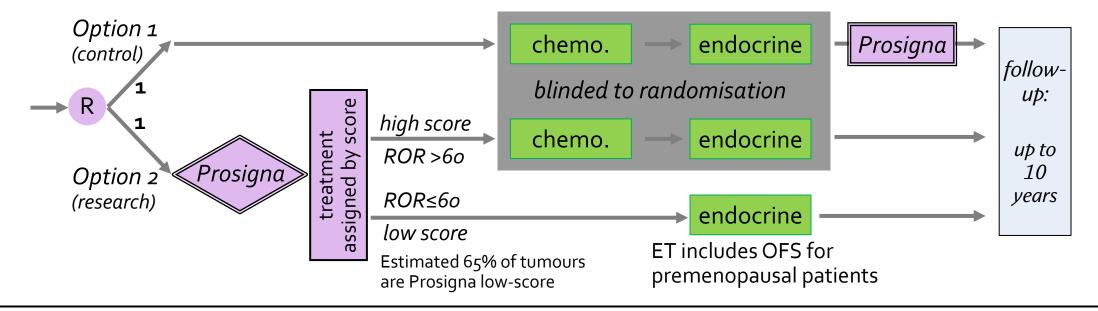
REFERENCES: 1. Dowsett M, Lopez-Knowles E, Sidhu K, et al. Comparison of PAM50 risk of recurrence (ROR) score with Oncotype DX and IHC4 for predicting residual risk of RFS and distant-(D)RFS after endocrine therapy: A TransATAC Study. Program and abstracts of the 34th Annual San Antonio Breast Cancer Symposium; December 6-10, 2011; San Antonio, Texas. Abstract S4-5.

2. Gnant M, et al., P2-10-02, Clinical Validation of the PAM50 risk of recurrence (ROR) score for predicting residual risk of distant-recurrence (DR) after endocrine therapy in postmenopausal women with HR+ early breast cancer (EBC): An ABCSG study, SABCS 2012.

3. Parker JS, Mullins M, Cheang MC, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160-1167

OPTIMA Study Design

optima@warwick.ac.uk


Main eligibility criteria

- Women or Men age ≥40
- "Adequate surgery"; ANC not mandatory
- ER-pos (>10%) HER2-neg (local lab)
- Size & nodes: one of the following
 - pN0 & pT≥30mm; pN1mi & pT≥20mm; pN1-2

 Multiple ipsilateral and "non-significant" contralateral tumours permitted

Main exclusion criteria

- Advanced stage pN3/ IM node involvement
- Neoadjuvant chemotherapy
- Previous IBC; locally treated DCIS permitted

Efficacy analysis uses non-inferiority design

Health economics analysis

Sample size = 4,500 (+ 412 OPTIMA prelim)

Molecular Profiling for HR+ Early Breast Cancer

- General principles and therapeutic approach
- Mammaprint Assay (Agendia)
- Oncotype Risk Score (Exact Sciences)
- Prosigna Assay (Veracyte)
- Summary and Future Directions

Molecular Profiling for HR+ Early Breast Cancer

- Breast cancer is the most common malignancy in woman; HR+/HER2- is the most common subtype
- Foundational approaches to curative intent: local + systemic therapy
- Antiestrogen therapy is critical to reducing long-term local/distant recurrence risk
- Genomic risk assays help provide further insights and personalized care
- Prognostic: likelihood of distant relapse
- Predictive: impact of chemotherapy (in addition to antiestrogen treatment)
- Further work is important and ongoing:
- How to optimize care for premenopausal patients with node+ disease?
- Impact of emerging assays (eg. minimum residual disease/MRD assays)?

Thank You!

